xiubo128
伴读书童
伴读书童
  • 注册日期2015-10-17
  • 发帖数87
  • QQ
  • 铜币118枚
  • 威望19点
  • 贡献值0点
  • 银元0个
  • GIS帝国居民
  • GIS帝国铁杆
阅读:3037回复:1

GIS 热点分析错误

楼主#
更多 发布于:2016-04-02 12:55
我在做热点分析时,提示:warning000853:默认邻域搜索阈值为45320.7595meters。


帮助里给的解决方案:


将计算出的距离用作建议的起始位置。针对
空间关系的概念化调整值或使用不同的选项,以确保各要素具有足够的邻域。
请问是什么问题?该怎么解决啊?多谢
PS:地理坐标系: GCS_Beijing_1954投影坐标系: Beijing_1954_3_Degree_GK_CM_108E
喜欢0 评分0
gis
gis
管理员
管理员
  • 注册日期2003-07-16
  • 发帖数15951
  • QQ
  • 铜币25345枚
  • 威望15368点
  • 贡献值0点
  • 银元0个
  • GIS帝国居民
  • 帝国沙发管家
  • GIS帝国明星
  • GIS帝国铁杆
1楼#
发布于:2016-04-05 12:23
The ESRI Spatial Statistics tools do not calculate great circle distance if the data is in a geographic coordinate system (Lat/Long). As such, distance based spatial analysis is incorrect. The tools require that your projection units be in feet or meters. The "ZONE_OF_INDIFFERENCE" is a term made up by ESRI that basically means that within a local neighborhood the values one or both sides of the equation are exhibiting identical values. You cannot fit a regression on a single value!
I feel obligated to point out that you should use GWR with great caution. There are several papers that have identified serious flaws with this method. You should also be aware of the original intent of GWR. It is specifically designed to address data that exhibits nonstationarity. This is a second order (local) autocorrelation effect whereas the Moran's-I statistic represents 1st order effects (global). If your data does not have any 2nd order effects the results of GWR will be quite incorrect. You can test this using one of the local autocorrelation tools (under Mapping Clusters). If you have spatial outliers with significant p values then GWR is appropriate, given its limitations. Spatial exploratory analysis is a critical step before applying a given regression approach.


参考这里:http://gis.stackexchange.com/questions/59283/what-do-arcgis-regression-analysis-warnings-000853-000916-000981-mean
GIS麦田守望者,期待与您交流。
举报 回复(0) 喜欢(0)     评分
游客

返回顶部